FTPC SlowSimulator

Frank Simon
Max-Planck-Institut fiir Physik, Miinchen, Germany
fsimon@mppmu.mpg.de

September 13, 2002

Contents
1 The SlowSimulator 1
1.1 Program Structure L 1
1.1.1 StFtpcSlowSimulator 2
1.1.2 StFtpcSlowSimCluster o Lo 2
1.1.3 StFtpcSlowSimReadout L. 2
1.1.4 StFtpcRawWriter 3
1.2 Running the Program 3
1.2.1 The SlowSimulator in the STAR Reconstruction Chain. 3
1.2.2 Using a local Database 3
1.2.3 Creating Input Files oo 4
2 The AssociationMaker 6
2.1 AssociationMaker Program Structure 6
2.1.1 StAssociationMaker Lo oo 6
2.1.2 StMcAnalysisMaker 7

1 The SlowSimulator

1.1 Program Structure

The FTPC SlowSimulator consists of several classes that perform specialized tasks. The
main class that is called by the STAR reconstruction chain is StFtpcSlowSimMaker. This
class follows the structure of STAR Maker classes and features initialization routines that

2 1.1 Program Structure

initialize parameters of the SlowSimulator at the beginning of the run and for each event.
The routine StFtpcSlowSimMaker : :Make initializes all necessary data and database read-
ers and writers and then starts the simulation program StFtpcSlowSimulator: :Simulate
itself.

1.1.1 StFtpcSlowSimulator

This class contains the main part of the simulation program, which is executed by calling
the subroutine StFtpcSlowSimulator: :Simulate. This routine is called once per event
and basically consists of one big loop that loops over all hits (read from GEANT) in the
current event. This offers the possibility to add smearing functions to smear out the input
coordinates to simulate the effect of reduced spatial resolution or to randomly eliminate
hits to simulate the influence of additional inefficiencies. The GEANT information is
transformed into FTPC coordinates (r, ¢ and row instead of x, y, z) and together with the
simulated charge it is passed through simulation subroutines, which are wrapped in new
classes and are called from StFtpcSlowSimulator: :Simulate sequentially. It is important
to note that throughout the whole simulation chain, all calculations are performed in global
coordinates which are equal for the East and West FTPC. The specific distinctions are
only made in the last step after the loop over all hits, in StFtpcRawWriter, where the
simulated pad responses are written into the output tables.

1.1.2 StFtpcSlowSimCluster

This class, with its main routine StFtpcSlowSimCluster: :DriftDiffuse simulates the
evolution of the charge cloud as it drifts from its creation point to the readout chambers.
It takes the field-dependent drift velocity, the lorentz angle due to E x B effects as well
as diffusion and absorption into account.

1.1.3 StFtpcSlowSimReadout

The different subroutines of this class, called by StFtpcSlowSimulator::Simulate
simulate different stages of the readout process. StFtpcSlowSimReadout::Avalanche
calculates the electron multiplication in the wire chambers of the readout modules,
StFtpcSlowSimReadout : : PadResponse simulates the response of the readout pads and
StFtpcSlowSimReadout : : ShaperResponse simulates the influence of the shaper stage on
the front end electronics boards. StFtpcSlowSimReadout: : PadResponse digitizes the pad
data by using the known relations between charge and ADC values. As new features at this
stage, the ADC amplitude is corrected for realistic gain settings on the readout chamber to
get consistency between simulated and measured amplitudes, and a Gaussian distributed
random noise is added to the simulated data.

1 The SlowSimulator 3

1.1.4 StFtpcRawWriter

The subroutine StFtpcRawWriter: :WriteArray builds the complete DAQ sequences from
the digitized ADC values. It takes the ASIC parameters of the readout electronics into
account and corrects for the different mapping in the East and West FTPC. The finished
sequences are written to the DAQ tables that are used in the STAR reconstruction chain.

1.2 Running the Program

The successful running of a FTPC simulation requires two basic ingredients, first the
correct running of the SlowSimulator in the STAR reconstruction chain, and second the
creation of compatible input data files.

1.2.1 The SlowSimulator in the STAR Reconstruction Chain

The FTPC SlowSimulator is designed to run within the STAR reconstruction framework,
and is executed from the bfc.C macro by specifying a certain set of options. One example
is

.x bfc.C(1, "C2001 fss big GeantOut", filename)

where filename is the input file containing simulated raw data (see next subsection).
The output of the simulator is automatically passed to the FTPC ClusterFinder and
to the tracker, in the end resulting in fully reconstructed data. In addition to the usual
event.root file that contains the reconstructed data, a geant.root file that permits to
match reconstructed data with the original GEANT input is written out. This output
file is needed to analyze the results from the simulation, i.e. to extract efficiencies and
momentum resolution by using the AssociationMaker.

1.2.2 TUsing a local Database

To use a local database, for example to include dead pads in the ClusterFinder or to
change the gas parameters for the SlowSimulator, small changes in the code have to be
made. The local database has to be copied to the directory StarDb/ftpc. The database
access has to be changed in the Init () routine of the corresponding maker. The change

is from:

m_gas (St_ftpcGas *)dblocal_calibrations("ftpcGas");

to

m_gas (St_ftpcGas *)local("ftpcGas");

4 1.2 Running the Program

1.2.3 Creating Input Files

The format used for the input files is the GEANT output format *.fzd. Files in this
format need no further processing, they can be directly used in the reconstruction chain.
This is usually the case for HIJING files, which have already been processed by GEANT.

In the case of using self-made special events, the fzd files have to be created by running
GEANT. This is done from the Star Analysis Framework (staf) which is a FORTRAN -
based environment. To run GEANT, standardized macros (*.kumac) are used. The input
to GEANT is a text file in either the old (simple) or new (more flexible) format. Note
that running GEANT over files with high multiplicity events takes considerable amount
of computing time, especially with full physics switched on. The result of such a GEANT
run is a fzd file that can be used in the simulator.

An example for a working GEANT macro is the following:

MACRO test nevent=1
* generate a standard geometry with a drawing
* and a keyword explanation:

debug on

detp geometry year2001 Field=5 Phys_off Split_off
make geometry

* create 4 pion tracks

swit 2 3
swit 4 3

gfile o 4tracks_tpc.fzd
user/input txold 4tracks_tpc.txold

rung 11 O
trig [nevent]

* exit

return

It creates a fzd file named 4tracks_tpc.fzd from the input text file 4tracks_tpc.txold
by running the first event from the text file through GEANT. The GEANT settings use
the year2001 setup with full positive field (5 kGauss). Physics effects are switched off.

1 The SlowSimulator 5

Macros that start from scratch and create HIJING events and run them through the
GEANT detector simulation to write out fzd files are more complicated. A working ex-
ample is:

MACRO hijev nevent=100 file=hijing run=1
application data hijev.inp

! mmmmm Hijing Control file mmmmm

’ Run number > 1
’ Event number >0
’ Generator number > 31
? Frame/Energy ? ’CMS’ 200.
> Projectile type/A/Z > A 197 79
? Target type/Z/Z > A 197 79
> Impact parameter min/max (fm) > 0. 3.
> Jet quenching (1=yes/0=no) >0
> Hard scattering/pt jet (0/1, -thr) >’ 0 -2.25
’ Max # jets per nucleon (D=10) ’ 10
> ihpr2(11), ihpr2(12)-pi0,k0,D,L,...decayoff > 1 1
? ihpr2(21)- keep daughters, ihpr2(18) > 1 0
> set C/B production(C=1.5,B=5.36) > 1.5
hijev.inp
*
* GSTAR setup
detp geometry year2001 Field=5 Phys_off Split_off
RNDM $pid [runl]
vsig 0.01 18.
ghist [file].his
gstat time size mult stak
*$
make hij
make geometry
make gstar
make control
* set a primitive dataset structure
mkdir evgen
cd evgen
tdm/newtable particle particle 40000
cd ..
* I/0 setup here
user/input u evgen/particle.staf

gfile o [file][run].fzd

* run event loop
do i = 1, [nevent]
mod/call hijjet evgen/particle
more evgen/particle
trig 1
enddo
*
exit

return

2 The AssociationMaker

The AssociationMaker is used to compare the reconstructed information with the origi-
nal simulation data. For a detailed description of the program refer to the appropriate
documentation. Here, a short overview of the relevant features is given.

2.1 AssociationMaker Program Structure

The AssociationMaker is run from a ROOT script, and it consists of two separate makers,
the StAssociationMaker and the StMcAnalysisMaker.

2.1.1 StAssociationMaker

The StAssociationMaker is the program that does the association of reconstructed hits to
MC hits, and the association of reconstructed tracks and MC tracks. For this association,
certain parameters such as the maximum distance of points and the minimum number
of common hits an a track have to be specified. This is done by the macro calling the
AssociationMaker. The associated hits and track are written into multi-maps that are
used in the later analysis.

A known problem of the AssociationMaker is that it only associates FTPC hits with y >
0. This is due to the sorting of the FTPC hits in their container and can be solved by
removing the speed optimization that relies on the correct order of hits. This is done by
changing

StMcFtpcHitIterator ftpcHitSeed

= find_if (mcFtpcHitColl->plane(iPlane)->hits().begin(),
mcFtpcHitColl->plane (iPlane)->hits() .end(),
ftpcComp) ;

to

2 The AssociationMaker 7

StMcFtpcHitIterator ftpcHitSeed
= mcFtpcHitColl->plane(iPlane)->hits() .begin();

thus removing the find_if function that needs correct sorting of the hits.

2.1.2 StMcAnalysisMaker

The McAnalysisMaker is a program that has to be adapted to the specific requirements
of the current analysis. It uses the results of the AssociationMaker, which is called from
within the McAnalysisMaker, and evaluates them for further use. A common procedure
is to create a tree that is filled with the difference between reconstructed and associated
MC hits, or with the momentum difference of reconstructed and MC tracks, to evaluate
spatial and momentum resolution. Here, it has to be kept in mind that the Association-
Maker, dependent on the cuts, can associate several MC hits a to given reconstructed hit,
and correspondingly can also associate several MC tracks to a reconstructed track. This
requires further checks in order not to distort efficiency measurements.

